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LElTER TO THE EDITOR 
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t Department of Physics and Center for Theoretical Physics, Seoul National University, 
Seoul 151-742, Korea 
$ Department of Physics, Chungbuk National University, Cheongju 360-763, Korea 

Received 10 July 1992 

Abstract. A two-dimensional superconducting array with applied external currents is 
studied both analytically and numerically. With the Hamiltonian describing the stationary 
state of the system, we calculate the current-voltage characteristics and, remarkably, obtain 
Ohmic behaviour in the low-current regime, thus providing a natural explanation of the 
ammalous behaviour observed in experiments. We also present results of numerical 
simulations of the Langevin equation ruling the time evolution a f the  system, which confirm 
the linear arrent-Voltage relation obtained analytically. Implications for the dynamic KT 

theory are also discussed. 

Two-dimensional ( 2 0 )  arrays of superconductors, weakly coupled by Josephson junc- 
tions, have been extensively studied both experimentally and theoretically (for a list 
of references see articles in [l]). They provide very interesting model systems for the 
study of phase transitions and dynamical behaviour from a fundamental point of view, 
as well as for the understanding of practical superconducting systems such as granular 
films. In recent years analytical work [2] as well as numerical simulations [3] on 20 

arrays of resistively-shunted Josephson junctions have been carried out. In [Z] the 
dynamic response of the system to an alternating field was considered for the case of 
periodic boundary conditions, and the frequency-dependent conductivity was calcu- 
lated. However, the response to a (direct) current with realistic boundary conditions 
and the corresponding current-voltage (I- V) characteristic was not considered. On 
the other hand, the authors of [3] considered the system in the presence of applied 
direct currents, which resembles the experimental situation more closely. They calcu- 
lated the I- V characteristics and time-dependent voltage together with its power 
spectrum, and demonstrated the existence of a phase transition, which appears to be 
a Kosterlitz-Thouless (KT) transition [41. Then there appeared an analytical study of 
the same system, confirming the KT transition at the current-dependent critical tem- 
perature [SI. These results are consistent with recent experiments [6] which measured 
current-voltage characteristics, and obtained the universal jump in the exponent of 
the current-voltage relation, which is believed to  be characteristic of the KT transition 
according to the dynamical extension of the KT theory [7]. However, it is of interest 
to note that in these experiments the I- V relation apparently tends to he linear in the 
low-current regime, even at temperatures lower than the estimated critical temperature. 
This anomalous behaviour, usually attributed to ambient magnetic fields, has not 
received serious attention, and a convincing explanation as to its origin still seems to 
be lacking. 
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The purpose of this work is to investigate in detail the I- V characteristics found 
in numerical simulations and experiments. We consider a 2~ array of resistively-shunted 
Josephson junctions whose time evolution is governed by coupled Langevin equations. 
With the effective Hamiltonian describing the stationary state of the system, we calculate 
the I - V  characteristics to obtain linear behaviour in the low-current limit. We also 
present results of numerical simulations, performed with the Langevin equations. They 
indeed lead to the expected nonlinear behaviour in the appropriate (intermediate- 
current) regime, in agreement with the standard theory. In addition, in the low-current 
regime they do display a remarkably linear behaviour, providing a natural explanation 
of the anomalous behaviour observed in experiments. 

We consider a square N x N array with a resistively-shunted Josephson junction 
on each bond. We follow [3], and choose the boundary conditions. Along one edge 
of the array (x=O) a uniform current I is injected into each node, while along the 
opposite edge ( x  = N) the same current i is extracted from eacn node. -with these 
boundary conditions, the time evolution of the system is governed by the coupled 
Langevin equations [ 51 

with 

hi = 2 G,4 -E x' G, sin(+, - + k )  
j , *  

where +j  is the phase of the superconducting order parameter at site i =  ( ix ,  i?), I ,  is 
the critical current of the junction, and 4 = I(6rz,o- SI,,N) is the current injected into 

the 
nearest neighbours of j, time f has been rescaled in units of fi /2eRIc with R being the 
shunt resistance, G, is the lattice Green function defined by 2; (bi- + j )  = Xj G;'&;, 
and the (dimensionless) noise current '& is characterized by (9g( t + T ) V ~  1 ) )  = 

From the Langevin equations ( l ) ,  one can derive the corresponding Fokker-Planck 

no& j ,  in equaiioii (1) the prime resiricij ihe suiiirila~ofi io pecoE,ed 

26(T)(&kajI -8iI6jk). 

--..- t:-- *La -tnt:nrm-. --l..t:-.. -f ..,I.:,& h." +hn Fnrm -f fi3.h m a ~ C . l r P  fnr +hp 
C q U a L L V n L ,  lllci "'a,'Y'La,J ~ W I U L I U I ,  W. W I . . ~ . ,  L . Y I  L l l l  LYL... "1 Y U . Y Y I  LI.-. . I"LI L V .  ...U 

canonical distribution with effective Hamiltonian [SI 

H=-Jo  COS(+~-+~) -Z  J(+i ( 2 )  
(,) i 

where Jo= fiI,f2e, and Ji = J(6i . ,o-Six,N) with J -  fi1/2e. As noted in [3], equation (2) 
is the Hamiltonian for arrays of the washboard potential, commonly used for a single 
junction [8], and describes non-equilibrium behaviour of the junction arrays driven 
by external currents. The corresponding action can he written in the form 

A[+] = 1 [ K O   COS(+^ - + j )  + KO(+;  - +,)I 
(,) 

= Z %+<-+A (3) 
ilii 

with K O =  Jo/k,T= pJo and K, = pJ6j,T.s+, E K6,x,jv+, . The phase transition associated 
with the action (3) has been studied via the renormalization group technique, and 
concluded to be a  transition at the critical temperature renormalized by the external 
currents [SI. 
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We then calculate the I - V  characteristics with the action in equation (3). The 
potential difference across the array (between edges i, = O  and i, = N) is given by 

where / is again the (dimensionless) rescaled time, and (. . .), represents the time average 
during the measurement time. In the stationary state, we replace the time average by 
the thermal average with respect to the action A[4], and write 

(hJ,=Z G$-ZI '  G&in(4j-4k)) ( 5 )  : *  
where 

with the partition function Z = j ( I I x  d&Jexp(A[4]). Thus the voltage is related to 
the spin-spin correlation function rjk (exp i(4j - &)) between nearest neighbours j 
and k, whose imaginary part gives the second term in equation ( 5 ) .  

To calculate the correlation function, we apply the dual transformation to 

A J 4 1  E [KO c o s ( @ I  - 4 d  + WI", + &Lj)(4f  - &)I 
( I",)  

= 1 Km(41-bm)+i(4j-4j). (6)  

Following [5], we regard &,,,(e) as a periodic function with period 2n7r (with the limit 
n + m  to be taken), and write exp( V,(0)+iB8f~S",j) as a Fourier series: exp(V,,(O)+ 
i081,&j)=& exp[isO/n+ 6 " , ( ~ / n - 4 ~ 8 , , , ~ ) ] ,  where,forthosebonds with K,=O, s takes 
only values of multiples of n. The correlation function thus can he written in the form 

( I"#) 

In the Villain approximation, which is valid a t  low temperatures and for small currents 
[SI, t j ( s )  takes the form 

leading to the spin-spin correlation function 

with kU= KO cos 0, and %= K,Bocos $. In equation (9 ) ,  To=(e"*~-mll)f_o is the 
spin-spin correlation function between nearest neighbours i and j ,  in the absence of 
the external current. It is real and independent of the site indices i and j by symmetry. 
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In this low-current regime, equation (4) together with equations ( 5 )  and (9) then 
leads to the potential difference across the array 

V =  R(l  - r d ( N I )  (10) 

which displays the linear Ohmic behaviour unless rn is equal to unity. The isotropic 
correlation function To is given by the standard KT theory [4]: 

with the renormalized interaction 

which shows Tu# 1 except at zero temperature. Thus, it is concluded that the I - V  
relation is linear for low currents at all finite temperatures. 

To confirm this result, we have performed numerical simulations with the Langevin 
equations ( 1 )  at various temperatures and applied currents, computing the average 
voltage drop at each run. In equation ( l ) ,  the lattice Green function G is singular due 
to the existence of the U( 1) symmetry of the system: a uniform rotation of all the 
phases leaves the equation of motion invariant. To remedy this problem, we fix the 
phase of one superconducting grain as in [3], which amounts to grounding that grain. 

The equations of motion (I)  are integrated with discrete time steps of A t  =0.1. At 
each run, N, = 105-106 time steps per spin were used to compute averages. Both A t  
and N, were varied to verify that the steady state was achieved. For example, discrete 
time steps of A t  = 0.01 were used at various temperatures and currents, but no appreci- 
able change could be observed in the numerical data. Standard block averaging and 
independent runs were used for estimating sampling errors. All calculations were 
performed with vectorized programs on a Cray. 

The resulting I - V  curves of the array of size N = 16 at various temperatures are 
shown in figure 1 while figure 2 displays typical dependence of the corresponding 
exponent a in the I- V characteristics ( V m  I - ) .  These figures show that the I- V 
relation is linear at high temperatures (regardless of currents) or at high currents 
(I> I,) (regardless of the temperature), which is expected since at high temperatures 

Figure 1. I - V  characteristics of the N = 16 array at 
various temperatures T. The voltage drop V and the 
external current I are scaled in units of NLR and 
I., respectively. Lines arc merely guides to the eye. 
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T = 0.E jll----- T = 1.0 

Figure 2. Dependence of exponent U in the I - V  
characteristics ( V - I " )  on the applied current I, at 
various temperatures T. I is again scaled io units of 
I , ,  and lines are merely guides to the eye. 

0 
-3 

i: - log<" I 

or at high currents the array should be in the normal state [5]. As the currents are 
decreased below I,, the I - V  relation becomes nonlinear at low temperatures, in 
agreement with experiments [6] and previous simulations [3]. The exponent a grows 
from unity as the temperature is lowered. In particular, the peak value of a apparently 
becomes 3 (and gets larger) as the temperature approaches around 0.9 (and decreases 
below this value), which is the estimated critical temperature T, in the equilibrium 
analysis [ 5 ] .  At first sight, this change of U from unity to 3 at Tc seems to agree with 
the dynamical KT theory [7]. However, it should be noted that this nonlinear I -V  
relation does not persist as the currents are decreased further. Remarkably, at low 
currents (I < 0.05ZJ the I -  V relation becomes linear again at all finite temperatures, 
thus confirming the analytical result given by equation (10). 

In order to check size dependence, we have also studied arrays of size N = 8, 12, 
24 and 32 in addition to N = 16. Figure 3 shows the resulting I -  V curves at T = 0.7, 
all but the smallest ( N  = 8) of which appear to display essentially the same behaviour. 
Thus the N = 16 array is considered to exhibit bulk properties reasonably well, without 
excessive finite-size effects. To see the detail of finite-size effects, we have calculated 
the corresponding array resistance I? = d V / N  dI, which, in the case of the nonlinear 
I -  V relation, should vanish in the low-current limit ( I  + 0). In figure 4, which shows 
the size dependence of I?, it seems rather unlikely that k approaches zero or log,, d 
approaches minus infinity as N gets larger. Instead I? appears to approach a finite 
value as N + w ,  suggesting that the linear I- V relation is not a mere finite-size effect. 

This not only provides a natural explanation of the anomalous linear I- V charac- 
teristics at low currents, observed both in junction arrays [6] and in thin films [9], 
but also suggests a slightly modified criterion of the phase transition in the I - V  
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Figure 3. I - V  characteristics of arrays of various 
size at temperature T =  0.7. Lines are merely guides 
to the eye. 

characteristics. In the conventional dynamic KT theory, which is based on the superfluid 
analogy with intrinsic phenomenological characters [7], the phase transition is charac- 
terized by the jump in the exponent LI (from unity to 3) in the low-current limit (I - 0 ) .  
In contrast, this work shows that the nonlinear I- V relation only appears at intermediate 
currents and accordingly that the change of a, again Characterizing the phase transition, 
should be investigated in the intermediate current regime where a reaches its maximum. 
Physically, this implies that finite currents are necessary for unbinding vortex-antivortex 
pairs and thus producing nonlinear behaviour, presumably due to the existence of 
finite potential barriers. 
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the Basic Science Research Institute Program, Ministry of Education of Korea. The 
work of JSC was also supported in part by a Research Grant from the Korea Research 
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Figure 4. Dependence of the array mistance d on 
the size N. R is scaled in units ofthe shunt resistance 
R, and the line is again merely a guide to the eye. 
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